Resources Blog VHH Library Generation

VHH Library Generation

Biointron 2024-01-26 Read time: 2 mins

VHH-Library-Generation.jpg

VHHs, also known as single-domain antibodies or nanobodies, are the smallest antigen-binding fragments derived from heavy-chain-only antibodies found in camelids, such as alpacas, llamas and camels. First discovered in 1993, VHH antibody fragments offer unique characteristics which are particularly advantageous in therapeutics, diagnostics, and research tools. This is due to their small size and structure which allows them to penetrate tissues and reach targets that may be challenging for conventional antibodies, in addition to their stability and ability to bind with high affinity to specific targets.1


VHH Library Generation 

There are several ways to isolate VHHs from camelids against a target of interest and to build a library for screening, such as immunized, naïve, and synthetic/semi-synthetic libraries. The most common approach is by immunizing camelids and building a library based on the repertoire of heavy-chain immunoglobulins.2,3 The process is as follows: 

  1. Camelid immunization: In 2 months, camelids are injected four to eight times with target antigens. 

  2. PBMC isolation: Peripheral blood samples are collected, and peripheral blood mononuclear cells are separated. 

  3. mRNA extraction and reverse transcription: mRNA is converted into cDNA. 

  4. Phage library generation: PCR is used to amplify the VHH gene regions. 

  5. Biopanning and library screening. 

  6. Positive clone sequencing and sequence analysis. 

  7. VHH expression and purification. 

  

At Biointron, we are dedicated to accelerating antibody discovery, optimization, and production. Our team of experts can provide customized solutions that meet your specific research needs. Contact us to learn more about our services and how we can help accelerate your research and drug development projects. 


References:

  1. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E. B., Bendahman, N., & Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature, 363(6428), 446–448. https://doi.org/10.1038/363446a0

  2. Arbabi-Ghahroudi, M. (2022). Camelid Single-Domain Antibodies: Promises and Challenges as Lifesaving Treatments. International Journal of Molecular Sciences, 23(9). https://doi.org/10.3390/ijms23095009

  3. Muyldermans, S. (2021). A guide to: Generation and design of nanobodies. The Febs Journal, 288(7), 2084-2102. https://doi.org/10.1111/febs.15515

Subscribe to our Blog

Recent Blog

Antibodies are versatile molecules that perform a range of effector functions, many of which engage different arms of the immune system. Their modes of action extend beyond simple antigen binding, enabling the activation of various immune mechanisms that lead to pathogen neutralization and clearance. These functions include blocking molecular interactions, activating the complement system, and linking the humoral immune response to cellular immune responses via Fc receptor engagement.

Sep 06, 2024
Blog

In today’s competitive biotech landscape, intellectual property (IP) protection has become an essential pillar in fostering innovation and collaboration across drug discovery and development. By offering clear IP terms and no royalty fees,pharmaceutical companies and research institutes

Sep 06, 2024
Blog

In addition to isotypes and subtypes, antibodies exhibit genetic variation known as allotypes, which are polymorphic epitopes on immunoglobulins. These allotypic differences arise from allelic variations in immunoglobulin genes, causing certain antibody subtypes to differ between individuals or ethnic groups. The presence of these polymorphic forms can influence immune responses, particularly when an individual is exposed to a non-self allotype, potentially triggering an anti-allotype immune reaction.

Sep 05, 2024
Blog

In mammals, antibodies are classified into five major isotypes: IgA, IgD, IgE, IgG, and IgM. Each isotype is defined by the heavy chain it contains: alpha (IgA), delta (IgD), epsilon (IgE), gamma (IgG), or mu (IgM). These structural differences in the heavy chains determine the antibody's function, tissue localization, and role in the immune response. Furthermore, antibody light chains fall into two classes—kappa and lambda—with kappa being more common, though both exhibit similar functions despite differences in sequence.

Sep 04, 2024
Blog

Our website uses cookies to improve your experience. Read our Privacy Policy to find out more.