Resources Blog Antibody Engineering: Enhancing Efficacy and Reducing Immunogenicity

Antibody Engineering: Enhancing Efficacy and Reducing Immunogenicity

Biointron 2024-03-25 Read time: 5 mins
Modification of mouse monoclonal antibodies (MAb) for clinical application
DOI: 10.32607/20758251-2009-1-1-32-50

Antibody engineering reshapes how antibodies, our body's natural defense mechanisms, are designed and utilized in medicine. The primary goals within this field are to enhance the efficacy of antibodies and reduce their immunogenicity—ensuring they are more effective and less likely to provoke adverse immune responses.

What is Antibody Engineering?

Antibody engineering refers to the modification of antibodies to improve their interaction with antigens, extend their half-life, reduce their immunogenicity, and tailor them for specific therapeutic applications. This discipline emerged from the need to create more effective therapeutic agents that can mimic or enhance the immune system's ability to fight diseases, including cancer, autoimmune disorders, and infectious diseases.

The journey of antibody engineering began in the 1970s with the development of monoclonal antibody technology. Over the decades, it has evolved from the production of murine antibodies to the creation of fully human antibodies, thanks to molecular biology and genetic engineering techniques. These advancements have paved the way for more sophisticated engineering strategies aimed at optimizing antibody function and safety.

Techniques in Antibody Engineering

Humanization

Humanization is a pivotal technique in antibody engineering, aimed at reducing the immunogenicity of murine antibodies for human therapeutic use. This process involves modifying the antibody to make it more similar to human antibodies, while retaining its ability to bind to the target antigen. Techniques such as CDR grafting and framework adjustment are commonly employed, resulting in antibodies that are less likely to be recognized as foreign by the human immune system. Examples of successful humanized antibodies include Trastuzumab and Enhertu, which have revolutionized the treatment of certain cancers.

Affinity Maturation

Affinity maturation, a natural process where the immune system refines antibody binding to antigens, is crucial for therapeutic efficacy. Scientists can mimic this process in the lab using techniques like phage display and yeast display. These techniques allow researchers to create vast libraries of antibody variants and then select those with improved binding characteristics.  This enhanced binding can significantly contribute to the success of antibody-based therapies.

Bispecific Antibodies

Bispecific antibodies are engineered to recognize and bind to two different antigens simultaneously. This unique capability makes them powerful tools in cancer therapy, where they can engage immune cells and target cells simultaneously, leading to more effective cell killing. While the development of bispecific antibodies initially presented significant challenges with stability and manufacturability, recent advancements in protein engineering and conjugation techniques are paving the way for a new generation of bispecific antibodies with improved stability and manufacturability, making them a promising avenue for the development of next-generation cancer therapies.

Importance of Antibody Engineering in Therapy

Antibody engineering has revolutionized therapeutic strategies, offering treatments that are highly specific, effective, and with fewer side effects. By reducing the immunogenicity of antibodies, patients experience fewer adverse reactions, enhancing the safety profile of antibody-based therapies. Moreover, engineered antibodies can be customized for personalized medicine, targeting specific pathogens or cancer cells unique to the individual.

The success of engineered antibodies in clinical use is evident in the numerous FDA-approved treatments available today. For instance, Blinatumomab, a bispecific murine antibody used in cancer immunotherapy, showcases the potential of engineering efforts to produce therapies with significant patient benefits. These successes underscore the transformative impact of antibody engineering on modern medicine.

At Biointron, we are dedicated to accelerating your antibody discovery, optimization, and production needs. Our team of experts can provide customized solutions that meet your specific research needs. Contact us to learn more about our services and how we can help accelerate your research and drug development projects.

Subscribe to our Blog

Recent Blog

Antibodies are versatile molecules that perform a range of effector functions, many of which engage different arms of the immune system. Their modes of action extend beyond simple antigen binding, enabling the activation of various immune mechanisms that lead to pathogen neutralization and clearance. These functions include blocking molecular interactions, activating the complement system, and linking the humoral immune response to cellular immune responses via Fc receptor engagement.

Sep 06, 2024
Blog

In today’s competitive biotech landscape, intellectual property (IP) protection has become an essential pillar in fostering innovation and collaboration across drug discovery and development. By offering clear IP terms and no royalty fees,pharmaceutical companies and research institutes

Sep 06, 2024
Blog

In addition to isotypes and subtypes, antibodies exhibit genetic variation known as allotypes, which are polymorphic epitopes on immunoglobulins. These allotypic differences arise from allelic variations in immunoglobulin genes, causing certain antibody subtypes to differ between individuals or ethnic groups. The presence of these polymorphic forms can influence immune responses, particularly when an individual is exposed to a non-self allotype, potentially triggering an anti-allotype immune reaction.

Sep 05, 2024
Blog

In mammals, antibodies are classified into five major isotypes: IgA, IgD, IgE, IgG, and IgM. Each isotype is defined by the heavy chain it contains: alpha (IgA), delta (IgD), epsilon (IgE), gamma (IgG), or mu (IgM). These structural differences in the heavy chains determine the antibody's function, tissue localization, and role in the immune response. Furthermore, antibody light chains fall into two classes—kappa and lambda—with kappa being more common, though both exhibit similar functions despite differences in sequence.

Sep 04, 2024
Blog

Our website uses cookies to improve your experience. Read our Privacy Policy to find out more.