ResourcesBlogDeep Learning in Antibody Structural Modeling
Deep Learning in Antibody Structural Modeling
Biointron2024-01-25Read time: 3 mins
Understanding the structures and functions is essential to designing an antibody for a specific goal. Research into developing deep learning models which can help to predict these structures is a fascinating, ever-evolving topic. Deep learning is a subset of machine learning based on stacked artificial neural network layers, in which processing is used to extract increasingly higher-level features from affine transformation and non-linear activation function data.1
DeepH3 is a deep learning model that predicts inter-residue distances and orientations from antibody heavy and light chain sequence. These result in distributions which are then converted to geometric representations and used to discriminate between decoy structures and predict new antibody hypervariable complementarity-determining region (CDR) H3 loops de novo.2
These CDR H3 loops are necessary for antigen binding, and they possess high conformational diversity even if there is high sequence similarity.3 Due to this, CDR-H3 modeling has much fewer constraints than the other five of six CDRs (H1, H2, L1, L2, and L3), which means identifying high-quality H3 templates can be a harder job, with DeepH3 models being very valuable.
Another example of a deep learning method for antibody structure is DeepAb, which predicts accurate antibody FV structures from sequence. There are two steps to Ruffolo et al.’s (2022) process, with the first using a deep residual convolutional network to predict FV structure. Secondly, they use a quick Rosetta-based protocol to realize the structure from the predictions of the network. This method can also be used to model single-domain (VHH) antibodies.4
At Biointron, we are dedicated to accelerating your antibody discovery, optimization, and production needs. Our team of experts can provide customized solutions that meet your specific research needs. Contact us to learn more about our services and how we can help accelerate your research and drug development projects.
References:
Gao, W., Mahajan, S. P., Sulam, J., & Gray, J. J. (2020). Deep Learning in Protein Structural Modeling and Design. Patterns, 1(9), 100142. https://doi.org/10.1016/J.PATTER.2020.100142
Ruffolo, J. A., Guerra, C., Mahajan, S. P., Sulam, J., & Gray, J. J. (2020). Geometric potentials from deep learning improve prediction of CDR H3 loop structures. Bioinformatics, 36(Supplement_1), i268–i275. https://doi.org/10.1093/bioinformatics/btaa457
Kim, J., McFee, M., Fang, Q., Abdin, O., & Kim, P. M. (2023). Computational and artificial intelligence-based methods for antibody development. Trends in Pharmacological Sciences, 44(3), 175–189. https://doi.org/10.1016/J.TIPS.2022.12.005
Ruffolo, J. A., Sulam, J., & Gray, J. J. (2022). Antibody structure prediction using interpretable deep learning. Patterns, 3(2), 100406. https://doi.org/10.1016/J.PATTER.2021.100406
The 15th Annual World Bispecifics Summit 2024 was held in Boston, MA on September 3-5, 2024. The event brought together experts in the field of bi, tri and multi-specifics, in addition to bispecific ADCs and BiTEs.
Antibodies are versatile molecules that perform a range of effector functions, many of which engage different arms of the immune system. Their modes of action extend beyond simple antigen binding, enabling the activation of various immune mechanisms that lead to pathogen neutralization and clearance. These functions include blocking molecular interactions, activating the complement system, and linking the humoral immune response to cellular immune responses via Fc receptor engagement.
In today’s competitive biotech landscape, intellectual property (IP) protection has become an essential pillar in fostering innovation and collaboration across drug discovery and development. By offering clear IP terms and no royalty fees,pharmaceutical companies and research institutes